
buildlink3:
Methodology and Philosophy

Johnny Lam
jlam@NetBSD.org



Outline

� Problem description

� Short history of different solutions in pkgsrc

� Unfinished work/ideas

� Summary



The problem of repeatable builds

� How to do repeatable builds of packages regardless of the order that the 
packages are built?

� E.g. PostgreSQL can build optional server-side language modules if 
Tcl/Tk and/or Perl are installed.

� If we build on a clean system, the resulting PostgreSQL binary 
package doesn't have any dependencies.

� If we install Tcl/Tk and Perl, then build PostgreSQL, the binary 
package depends on Tcl/Tk and Perl.

� PLIST is different between the two builds

� We want to precisely control what dependencies a package can have.  
Basically, we want to tell the build process which packages we want as 
dependencies and ignore everything else that's also installed on the system.



1st try: chroot sandbox

� Use chroot(8) to duplicate a full install of the operating system, add some 
binary packages for dependencies, and build the package.

� This is the basic idea behind pkgtools/pkg_comp.

� A lot of the stuff that the buildlink3 framework does isn't 
necessary if you use pkg_comp, but we don't take advantage of this.

� Pros:

� Perfect control over the build environment � if it's not in the chroot, 
then it can't be found.

� Cons:

� �Massive� use of disk space.  My Macintosh LC III running NetBSD-
1.1/mac68k devoted half its disk space to just the base OS.  Not enough 
room left over to install another copy of the OS into a chroot.

� Approach abandoned since it couldn't work on my machine.



2nd try: buildlink1

� Symlink headers and libraries into a directory and make the build look for 
those files inside that directory before /usr/pkg by passing appropriate -I 
and -L options to the compiler/linker.

� �build� the package against the sym�link�s, hence �buildlink� (aren't I 
clever?)

� Each package that supplies headers and/or libraries has a buildlink.mk file 
that lists the files to symlink into the buildlink directory 
(BUILDLINK_FILES)

� Pros:

� Easy to tell the compiler to look for files in the buildlink directory 
before looking anywhere else, a.k.a. �weakly buildlinked�

� Symlinks take up practically no disk space



� Cons:

� Had to read through and patch configure scripts and Makefiles to make 
the build not look outside of the buildlink directory, a.k.a. �strongly 
buildlinked�

� Very time-consuming process.

� A lot of up-front work at pre-configure time.

� Easy for GNU software, but nearly impossible for software that used 
imake without heavily editing the imake config files

� Had to remove references to the buildlink directory in installed files, 
e.g. GNOME *-config scripts, libtool archives.

� Had to be vigilant that all references were purged.  Very often, 
some files were overlooked.

� Couldn't symlink a library into the buildlink directory with a different 
name, e.g. pretend /usr/lib/libcurses.so was really ncurses, since it 
broke when linking on a.out

� Resulting package Makefiles were much more complex after conversion.

2nd try: buildlink1 (cont.)



3rd try: buildlink2

� Keep the working idea of symlinking headers and libraries into a buildlink 
directory

� Packages have buildlink2.mk files that list the files to symlink

� Instead of directly invoking the compiler/linker, use wrapper scripts

� Transform /usr/pkg into the buildlink directory

� Ignore stuff in /usr/local and /usr



� Pros:

� Package Makefiles were simple again.

� Didn't have to edit GNU configure scripts any more since the configure 
script thinks it's using files in /usr/pkg but it's really using files 
in the buildlink directory.

� Could pretend a library had a different name, e.g. tell the wrapper to 
link against -lncurses and actually link against -lcurses.

� Worked with X11 packages that used imake � no more �weakly buildlinked� 
packages.

� libtool wrapper script automatically fixed up libtool archives for us.

� The wrapper scripts could be used to fix problems with compilers on non-
NetBSD systems

� pkgsrc started being ported to Solaris and Linux around this time.  
Later, Darwin joined the cast.

� Discovered the buildlink technique was portable across many different 
OSes.

3rd try: buildlink2 (cont.)



� Cons:

� Build took longer than before due to overhead of transformations in the 
wrapper scripts.

� Wrapper scripts weren't originally designed to help make pkgsrc more 
portable, so scripts grew crufty.

� Only ignored stuff in /usr, /usr/local, and /usr/pkg, but allowed 
linking against libraries outside of those directory trees, e.g. 
/home/oracle

� buildlink2.mk files for packages that duplicated software in the base OS 
sometimes needed to create fake libtool archives

� This often broke for OSes with native pthread libraries

� Didn't work with package views

� buildlink2.mk files forced recursive dependencies

3rd try: buildlink2 (cont.)



last try: buildlink3

� Perfection! (for some value of �perfect�)

� Redesigned wrapper scripts to be easier to port to different OSes

� Can customize wrappers for different compilers

� No longer symlink stuff in /usr/{include,lib} into the buildlink directory � 
just use them where they lie

� Packages have buildlink3.mk files that tell pkgsrc about where the actual 
headers and libraries are found

� Packages have builtin.mk files that encapsulate the complexities of dealing 
with packages that duplicate software in the base system

� Designed from the start to integrate with the package views implementation



� Pros:

� No longer need to create fake libtool archives

� buildlink3 is smarter about munging libtool archives in the 
buildlink directory

� Solved large number of PRs related to libpthread, gettext-lib and 
libiconv

� Wrapper scripts can make other compilers look and behave like GCC.

� No need to add extra code/patches to packages to use different 
compilers.

� buildlink3.mk files are easier to maintain

� Don't have any code to deal with built-in software

� Don't need to list files to symlink anymore � bsd.buildlink3.mk 
figures it out automatically by examining the installed package

� No longer forces recursive dependencies (via BUILDLINK_DEPTH)

last try: buildlink3 (cont.)



Final frontier

� Problem: GNU configure scripts often test for the presence of *-config 
scripts and other executables in the PATH by trying to execute them.

� Often need to tune CONFIGURE_ENV to avoid finding random executables

� e.g. Add GLIB_CONFIG=no to CONFIGURE_ENV in the package Makefile to 
avoid finding glib, even though we don't include glib/buildlink3.mk.

� Solution?

� Ignore the PATH passed in from the environment and set a PATH used by 
the build that excludes everything except binaries in the base OS in 
/bin, /sbin, /usr/bin, etc. and binaries under ${WRKDIR}.

� Teach buildlink3 to also symlink *-config scripts into the buildlink 
directory

� Not yet implemented, but discussed with jmmv@NetBSD.org



Summary

� Each iteration of buildlink does a more thorough job of hiding everything 
except the files that you explicitly say you want

� We're basically emulating a chroot build by using shell wrapper script 
trickery that's portable across OSes

� Every future modification of the buildlink3 framework should be judged 
against this ideal

� Changes that take us farther away should be rethought or rejected

� Changes that take us closer should be cleaned up and incorporated


