buildlink3:
Methodology and Philosophy

Johnny Lam
jlam@NetBSD.org



Outline

Problem description
Short history of different solutions in pkgsrc
Unfinished work/ideas

Summary



The problem of repeatable builds

* How to do repeatable builds of packages regardless of the order that the
packages are built?

- E.g. PostgreSQL can build optional server-side language modules if
Tcl/Tk and/or Perl are installed.

e If we build on a clean system, the resulting PostgreSQL binary
package doesn't have any dependencies.

e If we install Tcl/Tk and Perl, then build PostgreSQL, the binary
package depends on Tcl/Tk and Perl.

e PLIST is different between the two builds

e We want to precisely control what dependencies a package can have.
Basically, we want to tell the build process which packages we want as
dependencies and ignore everything else that's also installed on the system.



1°* try: chroot sandbox

Use chroot(8) to duplicate a full install of the operating system, add some
binary packages for dependencies, and build the package.

- This 1s the basic idea behind pkgtools/pkg comp.

* A lot of the stuff that the buildlink3 framework does isn't
necessary if you use pkg comp, but we don't take advantage of this.

Pros:

- Perfect control over the build environment — if it's not in the chroot,
then it can't be found.

Cons:

“Massive” use of disk space. My Macintosh LC III running NetBSD-
1.1/mac68k devoted half its disk space to just the base 0S. Not enough
room left over to install another copy of the 0S into a chroot.

Approach abandoned since it couldn't work on my machine.



2" try: buildlinkl

Symlink headers and libraries into a directory and make the build look for
those files inside that directory before /usr/pkg by passing appropriate -1
and -L options to the compiler/linker.

“build” the package against the sym“link”s, hence “buildlink” (aren't I
clever?)

Each package that supplies headers and/or libraries has a buildlink.mk file
that 1lists the files to symlink into the buildlink directory
(BUILDLINK FILES)

Pros:

- Easy to tell the compiler to look for files in the buildlink directory
before looking anywhere else, a.k.a. “weakly buildlinked”

- Symlinks take up practically no disk space



2" try: buildlinkl (cont.)

e (Cons:

- Had to read through and patch configure scripts and Makefiles to make
the build not look outside of the buildlink directory, a.k.a. “strongly
buildlinked”

* Very time-consuming process.
* A lot of up-front work at pre-configure time.

* Easy for GNU software, but nearly impossible for software that used
imake without heavily editing the imake config files

- Had to remove references to the buildlink directory in installed files,
e.g. GNOME *-config scripts, libtool archives.

* Had to be vigilant that all references were purged. Very often,
some files were overlooked.

- Couldn't symlink a library into the buildlink directory with a different
name, e.g. pretend /usr/lib/libcurses.so was really ncurses, since it
broke when linking on a.out

- Resulting package Makefiles were much more complex after conversion.



3 try: buildlink2

Keep the working idea of symlinking headers and libraries into a buildlink
directory

Packages have buildlink2.mk files that list the files to symlink
Instead of directly invoking the compiler/linker, use wrapper scripts

- Transform /usr/pkg into the buildlink directory

- Ignore stuff in /usr/local and /usr



3" try: buildlink2 (cont.)

Pros:

Package Makefiles were simple again.

Didn't have to edit GNU configure scripts any more since the configure
script thinks it's using files in /usr/pkg but it's really using files
in the buildlink directory.

Could pretend a library had a different name, e.g. tell the wrapper to
link against -lncurses and actually link against -lcurses.

Worked with X11 packages that used imake - no more “weakly buildlinked”
packages.

libtool wrapper script automatically fixed up libtool archives for us.

The wrapper scripts could be used to fix problems with compilers on non-
NetBSD systems

* pkgsrc started being ported to Solaris and Linux around this time.
Later, Darwin joined the cast.

Discovered the buildlink technique was portable across many different
OSes.



3" try: buildlink2 (cont.)

Cons:

Build took longer than before due to overhead of transformations in the
wrapper scripts.

Wrapper scripts weren't originally designed to help make pkgsrc more
portable, so scripts grew crufty.

Only 1ignored stuff in /usr, /usr/local, and /usr/pkg, but allowed

linking against libraries outside of those directory trees, e.g.
/home/oracle

buildlink2.mk files for packages that duplicated software in the base 0S
sometimes needed to create fake libtool archives

* This often broke for 0Ses with native pthread libraries

Didn't work with package views

buildlink2.mk files forced recursive dependencies



last try: buildlink3

Perfection! (for some value of “perfect”)
Redesigned wrapper scripts to be easier to port to different 0Ses

- Can customize wrappers for different compilers

No longer symlink stuff in /usr/{include,lib} into the buildlink directory -
just use them where they lie

Packages have buildlink3.mk files that tell pkgsrc about where the actual
headers and libraries are found

Packages have builtin.mk files that encapsulate the complexities of dealing
with packages that duplicate software in the base system

Designed from the start to integrate with the package views implementation



last try: buildlink3 (cont.)

Pros:

No longer need to create fake libtool archives

* buildlink3 1is smarter about munging libtool archives in the
buildlink directory

 Solved large number of PRs related to libpthread, gettext-1lib and
libiconv

Wrapper scripts can make other compilers look and behave 1ike GCC.

* No need to add extra code/patches to packages to use different
compilers.

buildlink3.mk files are easier to maintain

* Don't have any code to deal with built-in software

* Don't need to list files to symlink anymore - bsd.buildlink3.mk
figures it out automatically by examining the installed package

No longer forces recursive dependencies (via BUILDLINK DEPTH)



Final frontier

Problem: GNU configure scripts often test for the presence of *-config
scripts and other executables in the pPATH by trying to execute them.

- Often need to tune CONFIGURE ENV to avoid finding random executables

* e.g. Add GLIB CONFIG=no tO CONFIGURE ENV 1n the package Makefile to
avoid finding glib, even though we don't include glib/buildlink3.mk.

Solution?

- Ignore the pPATH passed in from the environment and set a PATH used by
the build that excludes everything except binaries in the base 0S 1in
/bin, /sbin, /usr/bin, etc. and binaries under ${WRKDIR}.

- Teach buildlink3 to also symlink *-config scripts into the buildlink
directory

- Not yet implemented, but discussed with jmmv@NetBSD.org



Summary

Each iteration of buildlink does a more thorough job of hiding everything
except the files that you explicitly say you want

- We're basically emulating a chroot build by using shell wrapper script
trickery that's portable across 0Ses

Every future modification of the buildlink3 framework should be judged
against this ideal

- Changes that take us farther away should be rethought or rejected

- Changes that take us closer should be cleaned up and incorporated



