
Mancoosi tools for the analysis and quality
assurance of FOSS distributions

Ralf Treinen

UFR Informatique
Université Paris Diderot

treinen@pps.jussieu.fr

pkgsrcCon Berlin, March 23, 2013

Ralf Treinen Mancoosi tools

treinen@pps.jussieu.fr


Joint work with the Mancoosi team at Paris-Diderot

Roberto Di Cosmo Pietro Abate Jaap Boender

Yacine Boufkhad Jérôme Vouillon Zack

Ralf Treinen Mancoosi tools



Our research direction

Our long-term goal

Apply tools and method from computer science to advance the
quality of Free and Open Source Software.

Why are we doing this?

We are scientists working on formal methods

We are users and/or contributors to FOSS projects

Where we can help

Package-based software distributions:

1 Better tools to install packages

2 Better tools to assess the quality of distributions

Ralf Treinen Mancoosi tools



Our research direction

Our long-term goal

Apply tools and method from computer science to advance the
quality of Free and Open Source Software.

Why are we doing this?

We are scientists working on formal methods

We are users and/or contributors to FOSS projects

Where we can help

Package-based software distributions:

1 Better tools to install packages

2 Better tools to assess the quality of distributions

Ralf Treinen Mancoosi tools



Our research direction

Our long-term goal

Apply tools and method from computer science to advance the
quality of Free and Open Source Software.

Why are we doing this?

We are scientists working on formal methods

We are users and/or contributors to FOSS projects

Where we can help

Package-based software distributions:

1 Better tools to install packages

2 Better tools to assess the quality of distributions

Ralf Treinen Mancoosi tools



(Binary) packages in Debian

Package =

{
some files
some scripts
metadata

Identification

Inter-package rel.

Dependencies
Conflicts

Feature declarations

Other

Package maintainer
Textual descriptions
...

Example (package metadata)

Package: aterm

Version: 0.4.2-11

Section: x11

Installed-Size: 280

Maintainer: Göran Weinholt ...

Architecture: i386

Depends: libc6 (>= 2.3.2.ds1-4),

libice6 | xlibs (>> 4.1.0), ...

Conflicts: suidmanager (<< 0.50)

Provides: x-terminal-emulator

...

Ralf Treinen Mancoosi tools



Installation process in Debian

Phase Trace
User request # apt-get install aterm

Constraint resolution



Reading package lists... Done

Building dependency tree... Done

The following extra packages will be installed:

libafterimage0

The following NEW packages will be installed

aterm libafterimage0

0 upgraded, 2 newly installed, 0 to remove and 1786 not upgraded.

Need to get 386kB of archives.

After unpacking 807kB of additional disk space will be used.

Do you want to continue [Y/n]? Y

Package retrieval


Get: 1 http://debian.ens-cachan.fr testing/main libafterimage0 2.2.8-2 [301kB]

Get: 2 http://debian.ens-cachan.fr testing/main aterm 1.0.1-4 [84.4kB]

Fetched 386kB in 0s (410kB/s)

Pre-Inst Script {

Unpacking



Selecting previously deselected package libafterimage0.

(Reading database ... 294774 files and directories currently installed.)

Unpacking libafterimage0 (from .../libafterimage0_2.2.8-2_i386.deb) ...

Selecting previously deselected package aterm.

Unpacking aterm (from .../aterm_1.0.1-4_i386.deb) ...

Post-Inst Script

{
Setting up libafterimage0 (2.2.8-2) ...

Setting up aterm (1.0.1-4) ...

each phase can fail

efforts should be made to identify errors as early as possible

Ralf Treinen Mancoosi tools



Installation process in Debian

Phase Trace
User request # apt-get install aterm

Constraint resolution



Reading package lists... Done

Building dependency tree... Done

The following extra packages will be installed:

libafterimage0

The following NEW packages will be installed

aterm libafterimage0

0 upgraded, 2 newly installed, 0 to remove and 1786 not upgraded.

Need to get 386kB of archives.

After unpacking 807kB of additional disk space will be used.

Do you want to continue [Y/n]? Y

Package retrieval


Get: 1 http://debian.ens-cachan.fr testing/main libafterimage0 2.2.8-2 [301kB]

Get: 2 http://debian.ens-cachan.fr testing/main aterm 1.0.1-4 [84.4kB]

Fetched 386kB in 0s (410kB/s)

Pre-Inst Script {

Unpacking



Selecting previously deselected package libafterimage0.

(Reading database ... 294774 files and directories currently installed.)

Unpacking libafterimage0 (from .../libafterimage0_2.2.8-2_i386.deb) ...

Selecting previously deselected package aterm.

Unpacking aterm (from .../aterm_1.0.1-4_i386.deb) ...

Post-Inst Script

{
Setting up libafterimage0 (2.2.8-2) ...

Setting up aterm (1.0.1-4) ...

each phase can fail

efforts should be made to identify errors as early as possible

Ralf Treinen Mancoosi tools



Our Setting

Meta-data of packages

Core inter-package relationships :

Dependencies
Conflicts
Provides

Optionally, less central relationships (recommends, etc.)

Global analysis

Looking at a complete distribution

E.g.: take into account dependency chains

In contrast to local-only checks (e.g. checking that all
packages mentioned in metadata exist)

Ralf Treinen Mancoosi tools



Our Setting

Meta-data of packages

Core inter-package relationships :

Dependencies
Conflicts
Provides

Optionally, less central relationships (recommends, etc.)

Global analysis

Looking at a complete distribution

E.g.: take into account dependency chains

In contrast to local-only checks (e.g. checking that all
packages mentioned in metadata exist)

Ralf Treinen Mancoosi tools



Our Setting

Meta-data of packages

Core inter-package relationships :

Dependencies
Conflicts
Provides

Optionally, less central relationships (recommends, etc.)

Global analysis

Looking at a complete distribution

E.g.: take into account dependency chains

In contrast to local-only checks (e.g. checking that all
packages mentioned in metadata exist)

Ralf Treinen Mancoosi tools



Our Setting

Meta-data of packages

Core inter-package relationships :

Dependencies
Conflicts
Provides

Optionally, less central relationships (recommends, etc.)

Global analysis

Looking at a complete distribution

E.g.: take into account dependency chains

In contrast to local-only checks (e.g. checking that all
packages mentioned in metadata exist)

Ralf Treinen Mancoosi tools



Our Setting

Meta-data of packages

Core inter-package relationships :

Dependencies
Conflicts
Provides

Optionally, less central relationships (recommends, etc.)

Global analysis

Looking at a complete distribution

E.g.: take into account dependency chains

In contrast to local-only checks (e.g. checking that all
packages mentioned in metadata exist)

Ralf Treinen Mancoosi tools



Our Setting

Meta-data of packages

Core inter-package relationships :

Dependencies
Conflicts
Provides

Optionally, less central relationships (recommends, etc.)

Global analysis

Looking at a complete distribution

E.g.: take into account dependency chains

In contrast to local-only checks (e.g. checking that all
packages mentioned in metadata exist)

Ralf Treinen Mancoosi tools



Our Setting

Meta-data of packages

Core inter-package relationships :

Dependencies
Conflicts
Provides

Optionally, less central relationships (recommends, etc.)

Global analysis

Looking at a complete distribution

E.g.: take into account dependency chains

In contrast to local-only checks (e.g. checking that all
packages mentioned in metadata exist)

Ralf Treinen Mancoosi tools



At the beginning: a quite basic problem

Given a repository R of packages and a package p ∈ R, is p
installable w.r.t. R?

That is: Does there exist I ⊆ R such that

does the job: p ∈ I ;
is in peace: no conflicts inside R;
is abundant: all dependencies in R satisfied.

That means: installable in a completely empty environment.

Ralf Treinen Mancoosi tools



At the beginning: a quite basic problem

Given a repository R of packages and a package p ∈ R, is p
installable w.r.t. R?

That is: Does there exist I ⊆ R such that

does the job: p ∈ I ;
is in peace: no conflicts inside R;
is abundant: all dependencies in R satisfied.

That means: installable in a completely empty environment.

Ralf Treinen Mancoosi tools



At the beginning: a quite basic problem

Given a repository R of packages and a package p ∈ R, is p
installable w.r.t. R?

That is: Does there exist I ⊆ R such that

does the job: p ∈ I ;
is in peace: no conflicts inside R;
is abundant: all dependencies in R satisfied.

That means: installable in a completely empty environment.

Ralf Treinen Mancoosi tools



At the beginning: a quite basic problem

Given a repository R of packages and a package p ∈ R, is p
installable w.r.t. R?

That is: Does there exist I ⊆ R such that

does the job: p ∈ I ;
is in peace: no conflicts inside R;
is abundant: all dependencies in R satisfied.

That means: installable in a completely empty environment.

Ralf Treinen Mancoosi tools



At the beginning: a quite basic problem

Given a repository R of packages and a package p ∈ R, is p
installable w.r.t. R?

That is: Does there exist I ⊆ R such that

does the job: p ∈ I ;
is in peace: no conflicts inside R;
is abundant: all dependencies in R satisfied.

That means: installable in a completely empty environment.

Ralf Treinen Mancoosi tools



At the beginning: a quite basic problem

Given a repository R of packages and a package p ∈ R, is p
installable w.r.t. R?

That is: Does there exist I ⊆ R such that

does the job: p ∈ I ;
is in peace: no conflicts inside R;
is abundant: all dependencies in R satisfied.

That means: installable in a completely empty environment.

Ralf Treinen Mancoosi tools



Example

Repository R

Package: a Package: b Package: d
Version: 1 Version: 2 Version: 3
Depends: b (≥ 2) | d Conflicts: d

Package: a Package: c Package: d
Version: 2 Version: 3 Version: 5
Depends: c (> 1) Depends: d (> 3)

Conflicts: d (= 5)

Is a installable?

(a, 1) is installable. Why?

(a, 2) is not installable. Why?

Ralf Treinen Mancoosi tools



edos/dose-distcheck

2005: Tools edos-debcheck and edos-rpmcheck

Very efficient, using SAT-solver technology, and caching of
results obtained for various packages in the distribution.

Today: dose-distcheck, part of the dose3 tool suite.

Time for a demonstration . . .

Ralf Treinen Mancoosi tools



edos/dose-distcheck

2005: Tools edos-debcheck and edos-rpmcheck

Very efficient, using SAT-solver technology, and caching of
results obtained for various packages in the distribution.

Today: dose-distcheck, part of the dose3 tool suite.

Time for a demonstration . . .

Ralf Treinen Mancoosi tools



edos/dose-distcheck

2005: Tools edos-debcheck and edos-rpmcheck

Very efficient, using SAT-solver technology, and caching of
results obtained for various packages in the distribution.

Today: dose-distcheck, part of the dose3 tool suite.

Time for a demonstration . . .

Ralf Treinen Mancoosi tools



edos/dose-distcheck

2005: Tools edos-debcheck and edos-rpmcheck

Very efficient, using SAT-solver technology, and caching of
results obtained for various packages in the distribution.

Today: dose-distcheck, part of the dose3 tool suite.

Time for a demonstration . . .

Ralf Treinen Mancoosi tools



Debian weather

Running on edos.debian.net (today hosted by Mancoosi)

Daily summary of uninstallable packages

Differences between successive days

Distinction between arch=all and arch-specific

Date since when package uninstallable

Explanation of failed installability

Demo . . .

Ralf Treinen Mancoosi tools



Debian weather

Running on edos.debian.net (today hosted by Mancoosi)

Daily summary of uninstallable packages

Differences between successive days

Distinction between arch=all and arch-specific

Date since when package uninstallable

Explanation of failed installability

Demo . . .

Ralf Treinen Mancoosi tools



Debian weather

Running on edos.debian.net (today hosted by Mancoosi)

Daily summary of uninstallable packages

Differences between successive days

Distinction between arch=all and arch-specific

Date since when package uninstallable

Explanation of failed installability

Demo . . .

Ralf Treinen Mancoosi tools



Debian weather

Running on edos.debian.net (today hosted by Mancoosi)

Daily summary of uninstallable packages

Differences between successive days

Distinction between arch=all and arch-specific

Date since when package uninstallable

Explanation of failed installability

Demo . . .

Ralf Treinen Mancoosi tools



Debian weather

Running on edos.debian.net (today hosted by Mancoosi)

Daily summary of uninstallable packages

Differences between successive days

Distinction between arch=all and arch-specific

Date since when package uninstallable

Explanation of failed installability

Demo . . .

Ralf Treinen Mancoosi tools



Debian weather

Running on edos.debian.net (today hosted by Mancoosi)

Daily summary of uninstallable packages

Differences between successive days

Distinction between arch=all and arch-specific

Date since when package uninstallable

Explanation of failed installability

Demo . . .

Ralf Treinen Mancoosi tools



Debian weather

Running on edos.debian.net (today hosted by Mancoosi)

Daily summary of uninstallable packages

Differences between successive days

Distinction between arch=all and arch-specific

Date since when package uninstallable

Explanation of failed installability

Demo . . .

Ralf Treinen Mancoosi tools



More uses of distcheck in Debian

emdebian: check installability of package before uploading
new (versions of) packages to the archive

Build-dependencies:

turn a build-dependency (conflict) into a normal dependency
(conflict) of a dummy package
edos-builddepcheck: (currently) a wrapper that generates a
new repository, then runs edos-debcheck on it
Used by Debian auto-builders to avoid useless attempts to
create build environments.

Ralf Treinen Mancoosi tools



More uses of distcheck in Debian

emdebian: check installability of package before uploading
new (versions of) packages to the archive

Build-dependencies:

turn a build-dependency (conflict) into a normal dependency
(conflict) of a dummy package
edos-builddepcheck: (currently) a wrapper that generates a
new repository, then runs edos-debcheck on it
Used by Debian auto-builders to avoid useless attempts to
create build environments.

Ralf Treinen Mancoosi tools



More uses of distcheck in Debian

emdebian: check installability of package before uploading
new (versions of) packages to the archive

Build-dependencies:

turn a build-dependency (conflict) into a normal dependency
(conflict) of a dummy package
edos-builddepcheck: (currently) a wrapper that generates a
new repository, then runs edos-debcheck on it
Used by Debian auto-builders to avoid useless attempts to
create build environments.

Ralf Treinen Mancoosi tools



More uses of distcheck in Debian

emdebian: check installability of package before uploading
new (versions of) packages to the archive

Build-dependencies:

turn a build-dependency (conflict) into a normal dependency
(conflict) of a dummy package
edos-builddepcheck: (currently) a wrapper that generates a
new repository, then runs edos-debcheck on it
Used by Debian auto-builders to avoid useless attempts to
create build environments.

Ralf Treinen Mancoosi tools



More uses of distcheck in Debian

emdebian: check installability of package before uploading
new (versions of) packages to the archive

Build-dependencies:

turn a build-dependency (conflict) into a normal dependency
(conflict) of a dummy package
edos-builddepcheck: (currently) a wrapper that generates a
new repository, then runs edos-debcheck on it
Used by Debian auto-builders to avoid useless attempts to
create build environments.

Ralf Treinen Mancoosi tools



Detecting file conflicts

Goal: detect cases where two packages can be installed at the
same time, but doing so causes an error since one package
tries to highjack a file owned by another package.

Algorithm:

Look at the Debian Contents file, compute all pairs of
packages that contain a common file (Debian sid: ∼ 1000
pairs)
Use dose-debcheck to select pairs that are installable
together (Debian sid: ∼ 170 pairs)
Test installation in a chroot

See the list of bugs on edos.debian.net

Ralf Treinen Mancoosi tools

edos.debian.net


Detecting file conflicts

Goal: detect cases where two packages can be installed at the
same time, but doing so causes an error since one package
tries to highjack a file owned by another package.

Algorithm:

Look at the Debian Contents file, compute all pairs of
packages that contain a common file (Debian sid: ∼ 1000
pairs)
Use dose-debcheck to select pairs that are installable
together (Debian sid: ∼ 170 pairs)
Test installation in a chroot

See the list of bugs on edos.debian.net

Ralf Treinen Mancoosi tools

edos.debian.net


Detecting file conflicts

Goal: detect cases where two packages can be installed at the
same time, but doing so causes an error since one package
tries to highjack a file owned by another package.

Algorithm:

Look at the Debian Contents file, compute all pairs of
packages that contain a common file (Debian sid: ∼ 1000
pairs)
Use dose-debcheck to select pairs that are installable
together (Debian sid: ∼ 170 pairs)
Test installation in a chroot

See the list of bugs on edos.debian.net

Ralf Treinen Mancoosi tools

edos.debian.net


A Universal Format for Package Metadata

Translators to CUDF know about . . .

specific format and semantics of version numbers
(Is 0:7.00008.a∼-1 > 7.8.a-0.1 ? )

distribution-specific quirks
(What does it mean for a package to conflict with itself? )

the installation model
(Is it possible to install two packages of same name and
different version? )

Ralf Treinen Mancoosi tools



Installability is a hard problem

What makes the problem hard

Two features that together make the problem NP-complete:

Disjunctions in dependencies (may be implicit: Provides, or
multiple available versions of packages)

Conflicts (may be implicit: two packages of the same name
and different version may be in implicit conflict)

The good news

Modern solving techniques (SAT solvers, or others) cope very well
with analyzing distribution files.

Easy cases

The problem becomes computationally trivial when there are

no disjunctions (explicit or implicit)

or no conflicts (explicit or implicit)

Ralf Treinen Mancoosi tools



Installability is a hard problem

What makes the problem hard

Two features that together make the problem NP-complete:

Disjunctions in dependencies (may be implicit: Provides, or
multiple available versions of packages)

Conflicts (may be implicit: two packages of the same name
and different version may be in implicit conflict)

The good news

Modern solving techniques (SAT solvers, or others) cope very well
with analyzing distribution files.

Easy cases

The problem becomes computationally trivial when there are

no disjunctions (explicit or implicit)

or no conflicts (explicit or implicit)

Ralf Treinen Mancoosi tools



Installability is a hard problem

What makes the problem hard

Two features that together make the problem NP-complete:

Disjunctions in dependencies (may be implicit: Provides, or
multiple available versions of packages)

Conflicts (may be implicit: two packages of the same name
and different version may be in implicit conflict)

The good news

Modern solving techniques (SAT solvers, or others) cope very well
with analyzing distribution files.

Easy cases

The problem becomes computationally trivial when there are

no disjunctions (explicit or implicit)

or no conflicts (explicit or implicit)

Ralf Treinen Mancoosi tools



Finding strong dependencies

Definition

Strong dependency: A dependency that is a logical consequence
of all the package relations.

Example alphacharlie echoindia hotelgolffoxtrot#bravo delta
alpha strongly depends on foxtrot

Ralf Treinen Mancoosi tools



Learning from the future of a distribution

Two different questions that we have worked on:

If we upgrade a particular package p, what are the other
packages that (in their current version) become uninstallable?
These are the packages that will have to be upgraded together
with p

If the current version of a package p is found uninstallable
w.r.t. the current repository: can this be solved by upgrading
other packages in the distribution? If not, that means that p
has to upgraded!

And this is done with distcheck too!

Ralf Treinen Mancoosi tools



Learning from the future of a distribution

Two different questions that we have worked on:

If we upgrade a particular package p, what are the other
packages that (in their current version) become uninstallable?
These are the packages that will have to be upgraded together
with p

If the current version of a package p is found uninstallable
w.r.t. the current repository: can this be solved by upgrading
other packages in the distribution? If not, that means that p
has to upgraded!

And this is done with distcheck too!

Ralf Treinen Mancoosi tools



Learning from the future of a distribution

Two different questions that we have worked on:

If we upgrade a particular package p, what are the other
packages that (in their current version) become uninstallable?
These are the packages that will have to be upgraded together
with p

If the current version of a package p is found uninstallable
w.r.t. the current repository: can this be solved by upgrading
other packages in the distribution? If not, that means that p
has to upgraded!

And this is done with distcheck too!

Ralf Treinen Mancoosi tools



What’s the future of a distribution?

New packages may be created

Packages may be removed

Infinitely many possible future versions of packages

Future versions of packages may change their
dependencies/conflicts in an arbitrary way

Ralf Treinen Mancoosi tools



What’s the future of a distribution?

New packages may be created

Packages may be removed

Infinitely many possible future versions of packages

Future versions of packages may change their
dependencies/conflicts in an arbitrary way

Ralf Treinen Mancoosi tools



What’s the future of a distribution?

New packages may be created

Packages may be removed

Infinitely many possible future versions of packages

Future versions of packages may change their
dependencies/conflicts in an arbitrary way

Ralf Treinen Mancoosi tools



What’s the future of a distribution?

New packages may be created

Packages may be removed

Infinitely many possible future versions of packages

Future versions of packages may change their
dependencies/conflicts in an arbitrary way

Ralf Treinen Mancoosi tools



Example 1: Is (foo,1) installable?

Package: foo

Vers ion : 1

Depends: baz (= 2.5) | bar (= 2.3),

bar (> 2.6) | baz (< 2.3)

Package: bar

Vers ion : 2

Package: baz

Vers ion : 2

Con f l i c t s : bar (< 3)

Ralf Treinen Mancoosi tools



Example 1: Is (foo,1) outdated?

Package: foo

Vers ion : 1

Depends: baz (= 2.5) | bar (= 2.3),

bar (> 2.6) | baz (< 2.3)

Package: bar

Vers ion : 2

Package: baz

Vers ion : 2

Con f l i c t s : bar (< 3)

Ralf Treinen Mancoosi tools



Example 2: Is (foo,1) outdated?

Package: foo

Vers ion : 1

Depends: baz (= 2.5) | bar (= 2.3),

bar (> 2.6) | baz (< 2.3)

Package: bar

Vers ion : 2.3

Package: baz

Vers ion : 2.5

Con f l i c t s : bar (> 2.6)

Ralf Treinen Mancoosi tools



Results: challenging packages in Debian

Ralf Treinen Mancoosi tools



Understanding co-installability issues

Identify co-installability issues

Find quickly and concisely all pairs of components that are
incompatible.

Graphical visualisation and debugging of repositories

Present the co-installaibility issues to the repository mantainer in a
compact and usable way, to allow him to focus on the real
problem, and non on traversing a huge graph.

Base for further future analyses

Develop tools and theory that allow to manipulate co-installability
issues efficiently, to enable more complex analysis, typically for
repository evolution.

Ralf Treinen Mancoosi tools



Understanding co-installability issues

Identify co-installability issues

Find quickly and concisely all pairs of components that are
incompatible.

Graphical visualisation and debugging of repositories

Present the co-installaibility issues to the repository mantainer in a
compact and usable way, to allow him to focus on the real
problem, and non on traversing a huge graph.

Base for further future analyses

Develop tools and theory that allow to manipulate co-installability
issues efficiently, to enable more complex analysis, typically for
repository evolution.

Ralf Treinen Mancoosi tools



Understanding co-installability issues

Identify co-installability issues

Find quickly and concisely all pairs of components that are
incompatible.

Graphical visualisation and debugging of repositories

Present the co-installaibility issues to the repository mantainer in a
compact and usable way, to allow him to focus on the real
problem, and non on traversing a huge graph.

Base for further future analyses

Develop tools and theory that allow to manipulate co-installability
issues efficiently, to enable more complex analysis, typically for
repository evolution.

Ralf Treinen Mancoosi tools



The tool

Main techniques

drop package relations that are irrelevant for co-installability

identify packages that behave the same w.r.t. co-installability

Results on Mainstream GNU/Linux Distributions

Debian Ubuntu Mandriva
before after before after before after

Packages 28919 1038 7277 100 7601 84
Dependencies 124246 619 31069 29 38599 8
Conflicts 1146 985 82 60 78 62
Median cone size 38 1 38 1 59 1
Avg. cone size 66 1.7 84 1.3 153 1.1
Max. cone size 1134 15 842 4 1016 5
Running time (s) 10.6 1.19 11.6

Ralf Treinen Mancoosi tools



The tool

Main techniques

drop package relations that are irrelevant for co-installability

identify packages that behave the same w.r.t. co-installability

Results on Mainstream GNU/Linux Distributions

Debian Ubuntu Mandriva
before after before after before after

Packages 28919 1038 7277 100 7601 84
Dependencies 124246 619 31069 29 38599 8
Conflicts 1146 985 82 60 78 62
Median cone size 38 1 38 1 59 1
Avg. cone size 66 1.7 84 1.3 153 1.1
Max. cone size 1134 15 842 4 1016 5
Running time (s) 10.6 1.19 11.6

Ralf Treinen Mancoosi tools



Funded Research Projects

Past and present projects:

1/2004 −→ 6/2007 :

2/2008 −→ 5/2011 :

12/2010 −→ 3/2014 : Aeolus

Thanks to our sponsors!

Ralf Treinen Mancoosi tools



IRILL

Center for Research and Innovation on Free Software

Founders: Universities Paris 6 and 7, INRIA

Recent activities : Mozilla performance week, European LLVM
conference, FusionForge developers meeting, LibreOffice
conference, GNU hackers meeting, . . .

Ralf Treinen Mancoosi tools


