
Go on NetBSD (and pkgsrc!)
A modern systems programming language
23 March 2013

Benny Siegert
Google Switzerland; The NetBSD Foundation

Agenda

What is Go?

Building Go code with the go tool

Running Go code

pkgsrc

Conclusion

What is Go?

A modern systems programming language

Initially developed at Google, open source since 2009.

Initial implementation by Rob Pike, Robert Griesemer, Russ Cox, Ken Thompson.

compiled

mostly statically typed

garbage collected

provides control over memory layout

provides access to C APIs (via cgo) and syscalls

Go has powerful concurrency primitives.

Go is:

Simple: concepts are easy to understand

(the implementation might still be sophisticated)

Orthogonal: concepts mix clearly

easy to understand and predict what happens

Succinct: no need to predeclare every intention

Safe: misbehavior should be detected

These combine to give expressiveness.

(Source: R. Pike, The Expressiveness of Go (2010),
http://talks.golang.org/2010/ExpressivenessOfGo-2010.pdf (http://talks.golang.org/2010/ExpressivenessOfGo-2010.pdf))

http://talks.golang.org/2010/ExpressivenessOfGo-2010.pdf

Clean

The language is defined by a short and readable specification. Read it.

implemented by two compilers: gc and gccgo (gcc frontend).

The APIs in the standard library are well thought out,
contrary to the "bureaucracy" of C++ or Java:

foo::Foo *myFoo = new foo::Foo(foo::FOO_INIT)

but in the original Foo was a longer word

The standard library has "batteries included".

The code has a standard formatting, enforced by gofmt.
No more discussions about braces and indentation!

Hello World

All code lives in a package (package main is a command).

Semicolons are inserted automatically.

Opening brace for functions must go on the same line.

Strings are UTF-8, built-in string data type.

package main

import "fmt"

func main() {
 fmt.Println("Hello World!")
} Run

Another Hello World

net/http is not a toy web server! It powers e.g. dl.google.com.

package main

import (
 "flag"
 "fmt"
 "net/http"
)

var addr *string = flag.String("addr", ":8080", "host:port to listen on")

func main() {
 flag.Parse()

 http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintln(w, "Hello World!")
 })

 http.ListenAndServe(*addr, nil)
} Run

Basic data structures: slices and maps

Slices are a form of dynamic arrays.

Strings are immutable; they can be converted to []byte or []rune.

Type-safe hashtables (maps) are built-in.

translations := make(map[string]string)
translations["Hello"] = "Bonjour"

 a := []int{1, 2, 3, 4} // len(a) = 4, cap(a) = 4
 b := a[2:4] // b[0] = 3, b[1] = 4

 b = append(b, 5) // b[2] = 5
 _ = b[3] // out-of-bounds access Run

Object orientation

Objects in Go do not work like they do in C++.
No inheritance, no polymorphy.

They are more similar to objects in Perl 5.
You start from a basic type (struct, int, string, ...) and add methods.

package foo

type Number int

func (n Number) Square() Number {
 return n * n
}

Methods have a receiver before the name (often a pointer).

Table-driven testing

package foo

import "testing"

var squareTests = []struct {
 num, square Number
}{
 {1, 1},
 {2, 4},
 {256, 65536},
 {-10, 100},
}

func TestSquare(t *testing.T) {
 for _, test := range squareTests {
 actual := test.num.Square()
 if actual != test.square {
 t.Errorf("Square() of %v: got %v, want %v",
 test.num, actual, test.square)
 }
 }
}

Table-driven tests (2)

Here is the test run:

$ go test
PASS
ok github.com/bsiegert/talks/go-netbsd/object 0.004s

If I deliberately insert a mistake:

$ go test
--- FAIL: TestSquare (0.00 seconds)
object_test.go:21: Square() of -10: got 100, want -100
FAIL
exit status 1
FAIL github.com/bsiegert/talks/go-netbsd/object 0.004s

Finally, useful diagnostics!

Interfaces

Interfaces work on methods, not on data.

type Reader interface {
 Read(p []byte) (n int, err error)
}

type Writer interface {
 Write(p []byte) (n int, err error)
}

type ReadWriter interface {
 Reader
 Writer
}

Any type that implements these methods fulfills the interface implicitly
(i.e. no "implements" declarations).

Use the interface instead of a concrete type, e.g. in a function:

func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error)

Concurrency: goroutines

A goroutine is a sort of lightweight thread. It runs in the same address space,
concurrently and independent from the other goroutines.

f("Hello World") // f runs; we wait

go f("Hello World") // execution continues while f is running

They are much cheaper than threads, you can have thousands of them.

If one goroutine blocks (e.g. on I/O), the others continue to run.
This is easier to reason about than I/O with callbacks, as in node.js.

Maximum number of goroutines running in parallel is configurable
(e.g. one per core).

Concurrency: channels

Channels are type-safe "pipes" to transfer data between goroutines.

"Don't communicate by sharing memory -- share memory by communicating."

They are also a synchronization point.

timer := make(chan bool)
go func() {
 time.Sleep(deltaT)
 timer <- true
}()
// Do something else; when ready, receive.
// Receive will block until timer delivers.
<-timer

Easily implement worker pools, parallelize computations, etc.

More information: R. Pike, "Concurrency is not parallelism",
http://talks.golang.org/2012/waza.slide (http://talks.golang.org/2012/waza.slide) .

http://talks.golang.org/2012/waza.slide

"Self-documenting" code: godoc

godoc extracts and generates documentation for Go programs,
using comments in the source code.

// Package strings implements simple functions to manipulate strings.
package strings

// Count counts the number of non-overlapping instances of sep in s.
func Count(s, sep string) int {
 // …
}

http://golang.org (http://golang.org) runs godoc on Google App Engine.

godoc -http=:6060 runs the server locally.

godoc foo shows the documentation on the console (similar to a manpage).

Commands often have a doc.go containing only documentation.

http://golang.org/

Building Code With the go Tool

GOROOT and GOPATH

The default build tool is called go. It uses $GOROOT and $GOPATH.

GOROOT contains the standard Go tree (source + compiled form).

GOPATH is a colon-separated list of "user paths". It must be set by the developer.

Even after building, the source code is needed for godoc and for building dependent
packages.

GOPATH example

GOPATH=/home/user/gocode

/home/user/gocode/
 src/
 myproject/
 foo/ (go code in package foo)
 x.go
 server/ (go code in package main)
 y.go
 bin/
 server (installed command)
 pkg/
 netbsd_amd64/
 myproject/
 foo.a (installed package object)

Conventions for remote repos

package main

import (
 "code.google.com/p/go.image/tiff"
 "github.com/mattn/go-gtk"
 "launchpad.net/goamz/ec2"
)

Import path == URL (more or less). Supports free hosters and custom remote
repositories.

go get github.com/user/repo/package installs these dependencies
(if you have git, hg, bzr installed).

fetch, build, install

supports recursive fetching of dependencies

Running Go code

A word on compilers

The gc suite is the most often used compiler suite. It compiles insanely fast.

supports i386, amd64, arm

Linux, FreeBSD, OpenBSD, NetBSD, Windows

easy to cross-compile for other platforms

gccgo is a Go frontend for gcc, included in gcc 4.7.x.

supports all platforms gcc supports

better optimizations

may not have the latest standard libraries

has fewer users

Go packages

All Go code lives in a package.
Compiling a package main produces an executable binary.

Other packages are compiled to static libraries (.a files).

contain code and the exported interface

contain all dependencies

.a files from different compilers (and different compiler versions) are incompatible.

Running a server written in Go

Currently, Go programs cannot daemonize, so they run in the foreground.

daemonize is hard to implement

My suggestion: run it under daemontools (sysutils/daemontools)

log on stdout, collect logs with multilog

Daemontools example: continuous builder

/service/builder/run contains:

#!/bin/sh
exec 2>&1
exec setuidgid builder envdir env /service/builder/builder -commit netbsd-amd64-bsiegert

/service/builder/env/HOME contains:

/home/builder

/service/builder/log/run contains:

#!/bin/sh
exec setuidgid buildlog multilog ./main

Just copy the executable to /service/builder/builder, done!

pkgsrc

wip/go

Go is available in pkgsrc-wip as wip/go.

It installs source + binaries to $PREFIX/go.

The package supports

NetBSD

Linux

OpenBSD (untested)

Mac OS X (currently broken)

on i386 and x86_64.

NetBSD support is not in a stable release yet. (Go 1.1 will have it.)

pkgsrc and software written in Go

Two cases: libraries and executables.

Executables are easy, as they are statically linked.

may link dynamically against C libraries

no runtime dependencies to Go libs

need source (or part of it) for godoc

Libraries

Libraries have to be recompiled each time you upgrade the Go compiler.

similar to OCaml

make binary packages depend on the exact compiler version

recursive revbump when compiler is updated

We will need a go/package.mk.

Due to the way GOPATH work, adding buildlink should be easy

symlinks

or: install each library in a distinct path, add its directory to the GOPATH used for the
build from buildlink3.mk.

Conclusion

Conclusion

Try Go!
It may not look very revolutionary on first glance, but it is addictive.

Try Go on NetBSD.

Try wip/go and report any problems.

Thank you

Benny Siegert
Google Switzerland; The NetBSD Foundation
(mailto:bsiegert@google.com)

(mailto:bsiegert@netbsd.org)

(http://www.mirbsd.org/wlog-10.htm)

mailto:bsiegert@google.com
mailto:bsiegert@netbsd.org
http://www.mirbsd.org/wlog-10.htm

